

New Chimeric Antigen Receptor (CAR) Format for Developing Improved Adoptive Cell Therapies

Summary (1024-character limit)

Researchers at the National Cancer Institute (NCI) have developed a new format for expressing Chimeric Antigen Receptors (CARs) that is available for licensing and co-development. The inventors found that there was an increased therapeutic effect when using their proprietary (anti-glypican 3 [GPC3]) hYP7 antibody in this format. The novel technology is useful for improving CAR therapies to treat a range of cancers.

NIH Reference Number

E-016-2018

Product Type

Therapeutics

Keywords

• Cancer, Chimeric Antigen Receptor (CAR), GPC3, GPC2, solid tumor, tumor antigen, Mesothelin, Ho

Collaboration Opportunity

This invention is available for licensing and co-development.

Contact

John D. Hewes
NCI - National Cancer Institute

240-276-5515

John.Hewes@nih.gov

Description of Technology

Adoptive cell therapy (ACT) is an attractive new therapeutic approach for treating various cancers. ACT has recently demonstrated a high degree of efficacy when treating patients with hematological malignancies. However, to date, no effective Chimeric Antigen Receptors (CAR) T cell therapy exists for solid tumors.

Researchers in the National Cancer Institute (NCI) Laboratory of Molecular Biology (LMB) have created a new CAR format that is available for licensing and further co-development. This new format uses a specific promoter and signal peptide in a specific order allowing for increased efficiency of CAR T therapy. The inventors found that there was an increased therapeutic effect when using their proprietary (anti-glypican 3 [GPC3]) hYP7 antibody in this format.

Additionally, the inventors are exploring the use of this new CAR T format in conjunction with other antibodies against multiple other cancer antigens, including mesothelin and glypican 2 (GPC2).

Potential Commercial Applications

- Treating cancer patients eligible for ACT
- Treating patients with diseases associated with expression of GPC3, GPC2, and other tumor antigens (e.g. mesothelin)

Competitive Advantages

- The novel technology (new CAR format) can increase therapeutic effectiveness of CAR T therapies for patients with solid tumor cancers (i.e., hepatocellular carcinoma or pancreatic cancer) where no long term or effective therapy currently exists
- The novel technology (new CAR format) when used for immunotherapy in preclinical in vivo studies is already known to have a greater decrease in tumor size compared to those mice treated with other CAR formats

Inventor(s)

Mitchell Ho Ph.D. (NCI, CCR, LMB), Nan Li Ph.D. (NCI, CCR, LMB), Dan Li (NCI, CCR, LMB)

Development Stage

• Pre-clinical (in vivo)

Patent Status

• U.S. Provisional: U.S. Provisional Patent Application Number 62/584,421, Filed 11 Nov 2017

Related Technologies

- E-136-2012 High-Affinity Mouse Monoclonal Antibodies to GPC-3 for Liver Cancer Research
- E-211-2016 Human Monoclonal Antibodies Targeting Glypican-2 in Neuroblastoma
- E-198-2012 High-Affinity Rabbit Monoclonal Antibodies for Cancer Treatment
- E-130-2011 Single-domain monoclonal antibodies for the treatment of hepatocellular carcinoma
- E-091-2009 Antibody and Immunotoxin Treatments for Mesothelin-expressing Cancers

Therapeutic Area

Cancer/Neoplasm